Recommended Practices for Installation of Underground Liquid Storage Systems
Recommended Practices for Installation of Underground Liquid Storage Systems
Other Reference Publications available from PEI
Order online at www.pei.org/rp

- PEI/RP400, *Recommended Procedure for Testing Electrical Continuity of Fuel-Dispensing Hanging Hardware*
- PEI/RP500, *Recommended Practices for Inspection and Maintenance of Motor Fuel Dispensing Equipment*
- PEI/RP600, *Recommended Practices for Overfill Prevention for Shop-Fabricated Aboveground Tanks*
- PEI/RP800, *Recommended Practices for Installation of Bulk Storage Plants*
- PEI/RP900, *Recommended Practices for Inspection and Maintenance of UST Systems*
- PEI/RP1000, *Recommended Practices for Installation of Marina Fueling Systems*
- PEI/RP1400, *Recommended Practices for Design and Installation of Fueling Systems for Emergency Generators, Stationary Diesel Engines and Oil Burner Systems*
These Recommended Practices for Installation of Underground Liquid Storage Systems have been prepared as an industry service by the Petroleum Equipment Institute. This recommended practice is truly an industry document, as PEI members, environmental regulators, oil company engineers, oil marketing trade associations, etc., have had an opportunity to review and comment on the previous publication under the same name. The text represents the consensus views of the PEI Tank Installation Committee, comprised of the following members:

Leland M. Freeman, Chairman
Petroleum Solutions, Inc.
Victoria, Texas

Blake Bammer
Jones & Frank
Raleigh, North Carolina

Carl E. Bayliss, II
B C & C LLC
Winchester, Virginia

Joey Cheek
Guardian Fueling Technologies
Jacksonville, Florida

Ryan Haerer
U.S. Environmental Protection Agency
Washington, DC

Gina M. Jaimes
Sunoco LP
Corpus Christi, Texas

Michael Mizicko
Western Pump, Inc.
San Diego, California

David J. Piercey
JD2 Environmental, Inc.
West Chester, Pennsylvania

Peter Rollo
DNREC-Tank Management Branch
New Castle, Delaware

Greg Thomas
C. E. Thomas Company
Gardena, California

Bill R White
D&H United Fueling Solutions, Inc.
Lubbock, Texas

Serving as consultant to the committee was Kevin Henderson, Kevin Henderson Consulting LLC, 59 Summit Place, Brandon, MS, 39042.

The PEI Tank Installation Committee acknowledges the contributions to past editions of this document by the following people: John G. Dzwonczyk, O. L. Everett, John P. Hartmann, Maurice J. Hubbard, Frank Johnson, Marcel Moreau, J. H. Prentiss, Jr., Robert Renkes, Patrick M. Ryan, Jerry A. Thomas, Howard Upton and George H. Watkins.

This document supersedes and replaces the previous recommended practice entitled, Recommended Practices for Installation of Underground Liquid Storage Systems, PEI/RP100-2011.

All questions and other communications relating to this document should be sent only to PEI Headquarters, addressed to the attention of the PEI Tank Installation Committee.

Petroleum Equipment Institute
P.O. Box 2380
Tulsa, OK 74101-2380
Phone: (918) 494-9696
Fax: (918) 491-9895
Email: RP@pei.org
www.pei.org

© 2017 Petroleum Equipment Institute

No part of this document may be reproduced without the permission of PEI.
DISCLAIMER

Every effort has been made by the PEI Tank Installation Committee to ensure the accuracy and reliability of the information contained in this document. However, the Committee, its consultant and the Petroleum Equipment Institute make no representation, warranty or guarantee in connection with the publication of these recommended practices. The Institute hereby expressly disclaims any liability or responsibility for loss or damage resulting from the use of these recommended practices; for the violation of any federal, state or municipal regulation with which these practices may be in conflict; or for the infringement of any patent resulting from their use.
CONTENTS

Foreword .. iii

SECTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.4 Sources</td>
<td>1</td>
</tr>
<tr>
<td>1.5 Use of Other PEI Recommended Practices</td>
<td>1</td>
</tr>
<tr>
<td>1.6 Importance of Competent Installers</td>
<td>1</td>
</tr>
<tr>
<td>1.7 Written Plans</td>
<td>2</td>
</tr>
<tr>
<td>1.8 Unexpected Conditions</td>
<td>2</td>
</tr>
<tr>
<td>1.9 Corrosion Concerns</td>
<td>2</td>
</tr>
<tr>
<td>1.10 Regulations</td>
<td>2</td>
</tr>
<tr>
<td>2. Materials Handling</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Care in Handling Tanks</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Unloading, Lifting and Lowering</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Tank Storage</td>
<td>3</td>
</tr>
<tr>
<td>2.4 Piping and Equipment Storage</td>
<td>3</td>
</tr>
<tr>
<td>3. Preinstallation Inspection and Tank Testing</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Preinstallation Inspection</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Preinstallation Tank Testing</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Preinstallation Testing of Double-Walled Tanks</td>
<td>5</td>
</tr>
<tr>
<td>3.4 Preinstallation Testing of Compartmented Tanks</td>
<td>6</td>
</tr>
<tr>
<td>3.5 Alternative Interstice Tests</td>
<td>6</td>
</tr>
<tr>
<td>3.6 Double-Walled Tank With Liquid-Filled Interstice</td>
<td>6</td>
</tr>
<tr>
<td>3.7 Double-Walled Tank With Vacuum on Interstice</td>
<td>6</td>
</tr>
<tr>
<td>4. Earthwork</td>
<td>7</td>
</tr>
<tr>
<td>4.1 Earthwork</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Location of Excavation</td>
<td>8</td>
</tr>
<tr>
<td>4.3 Excavation Depth, Bedding and Backfill</td>
<td>8</td>
</tr>
<tr>
<td>4.4 Cover in Areas Subject to Traffic</td>
<td>8</td>
</tr>
<tr>
<td>4.5 Cover in Areas Not Subject to Traffic</td>
<td>8</td>
</tr>
<tr>
<td>4.6 Maximum Burial Depths</td>
<td>9</td>
</tr>
<tr>
<td>4.7 Handling of Excavated Materials</td>
<td>9</td>
</tr>
<tr>
<td>4.8 Work Area Safety</td>
<td>9</td>
</tr>
<tr>
<td>4.9 Excavation of Used Tanks</td>
<td>9</td>
</tr>
<tr>
<td>5. Backfilling</td>
<td>10</td>
</tr>
<tr>
<td>5.1 General</td>
<td>10</td>
</tr>
<tr>
<td>5.2 Ballasting</td>
<td>10</td>
</tr>
<tr>
<td>5.3 Water Management</td>
<td>10</td>
</tr>
<tr>
<td>5.4 Backfill Material for Steel, Composite (Fiberglass-Clad Steel) and Jacketed Tanks</td>
<td>10</td>
</tr>
<tr>
<td>5.5 Placement of Steel, Composite and Jacketed Tank Backfill</td>
<td>10</td>
</tr>
<tr>
<td>5.6 Backfill Material for Fiberglass Tanks</td>
<td>11</td>
</tr>
</tbody>
</table>
5.7 Placement of Fiberglass Tank Backfill ... 11
5.8 Compaction ... 12
5.9 Measuring Tank Deflection .. 12
5.10 Filter Fabric .. 12
5.11 Supporting Equipment During Construction .. 12

6. Anchoring .. 13
6.1 General .. 13
6.2 Excavating Requirements ... 13
6.3 Wet-Hole Conditions .. 13
6.4 Types of Anchorage .. 13
6.5 Straps .. 14
6.6 Electrical Isolation .. 15
6.7 Methods of Attachment ... 15

7. Spill Containment and Overfill Prevention .. 16
7.1 Purpose ... 16
7.2 Spill Containment ... 16
7.3 Overfill Prevention .. 16
 7.3.1 Alarms ... 16
 7.3.2 Flow Shutoff Devices .. 17
7.4 Installation of Overfill Devices .. 17

8. Secondary Containment .. 18
8.1 Purpose ... 18
8.2 Double-Walled Spill Buckets .. 18
8.3 Double-Walled Tanks .. 18
8.4 Double-Walled Piping ... 18
8.5 Containment Sumps ... 18
 8.5.1 Tank-Top Sumps .. 19
 8.5.2 Dispenser Sumps ... 19
 8.5.3 Transition Sumps .. 19
 8.5.4 Containment Sump Testing ... 19
8.6 Safety Considerations ... 20

9. Leak Detection ... 21
9.1 Purpose ... 21
9.2 Double-Walled Tank Leak Detection .. 21
 9.2.1 Interstitial Monitoring of Steel and Composite Tanks 21
 9.2.1.1 Manual Interstitial Monitoring of Steel and Composite Tanks 21
 9.2.1.2 Electronic Interstitial Monitoring of Steel and Composite Tanks ... 21
 9.2.2 Interstitial Monitoring of Fiberglass Tanks ... 21
 9.2.2.1 Manual Interstitial Monitoring of Fiberglass Tanks 21
 9.2.2.2 Electronic Interstitial Monitoring of Fiberglass Tanks 21
9.3 Double-Walled Piping Leak Detection ... 22
 9.3.1 Interstitial Monitoring of Piping .. 22
 9.3.1.1 Manual Interstitial Monitoring of Piping 23
 9.3.1.2 Electronic Interstitial Monitoring of Piping 23
9.4 Double-Walled Containment Sumps .. 23
 9.4.1 Manual Interstitial Monitoring of Double-Walled Containment Sumps 23
 9.4.2 Electronic Interstitial Monitoring of Double-Walled Containment Sumps 23
9.5 Automatic Line Leak Detectors .. 24
9.6 Satellite Dispenser Piping ... 24
9.7 Under-Pump Check Valve ... 24
10. Piping and Fittings ... 25
10.1 General Requirements for Product Piping 25
10.2 Piping Materials .. 25
10.3 Piping Practices ... 25
10.4 Piping Layout and Trenches .. 25
10.5 Piping Backfill and Compaction ... 26
10.6 Flexible Connectors .. 26
10.7 Threaded Joints ... 26
10.8 Metallic Piping .. 27
10.9 Fiberglass Piping ... 27
10.10 Flexible Piping ... 28
10.11 Containment Sumps ... 28
10.12 Vent Piping ... 28
10.13 Fill Piping ... 28
10.14 Submersible Pump ... 28
10.15 Suction Stub ... 29
10.16 Emergency Shutoff Valves ... 29
10.17 Manifolded Tanks and Siphon Piping 29
10.18 Vapor Recovery Piping ... 30
10.19 Water Gauging Port ... 30
10.20 Manhole Identification .. 30

11. Testing Piping .. 31
11.1 Testing of Product Piping .. 31
11.1.1 Initial Piping Test for Single-Walled Piping 31
11.1.2 Initial Piping Test for Coaxial Piping 31
11.1.3 Monitoring During Construction .. 31
11.1.4 Post-Construction Testing ... 31
11.2 Testing Secondary Containment Piping 31
11.2.1 Initial Test for Secondary Piping .. 31
11.2.2 Monitoring During Construction .. 31
11.2.3 Final Integrity Test for Secondary Piping 32

12. Cathodic Protection Systems .. 33
12.1 General Requirements ... 33
12.2 Applicability ... 33
12.3 Factory-Installed Systems for Tanks .. 33
12.4 Dielectric Coatings ... 33
12.5 Electrical Isolation ... 33
12.6 Galvanic Anodes for Piping ... 34
12.7 Impressed-Current Systems .. 34
12.8 Test Stations .. 35
12.9 Wiring and Electrical Connections .. 35
12.10 Piping ... 35
12.11 Protecting Piping ... 35
12.12 Field-Applied Coating ... 36
12.13 Other Components ... 36
12.14 Inspection and Testing ... 36

13. Electrical Installation ... 37
13.1 Importance of Electrical Work .. 37
13.2 General Requirements ... 37
13.3 Leak Detection and Cathodic Protection Systems 37
Appendix A: Floatout and Anchorage Calculations

A.1 Purpose .. 41
A.2 Weight of Materials ... 41
A.3 Reflected-Tank Area ... 41
A.4 Tank Displacement .. 41
A.5 Reinforced Concrete Pad at Finished Grade ... 41
A.6 Depth of Burial to Top of Tank .. 41
A.7 Volume and Weight of Overburden .. 41
A.8 Adequacy of Restraining Forces .. 42
A.9 Calculation of Safety Factor .. 42
A.10 Effect of Adding 1 Foot to the Burial Depth ... 43
A.11 Applicability .. 43

Appendix B: Background: Cathodic Protection

B.1 Galvanic Corrosion ... 44
B.2 Stray-Current Corrosion ... 44
B.3 Rate of Corrosion .. 44
B.4 Coatings .. 44
B.5 Cathodic Protection ... 44
B.6 Impressed-Current Systems ... 44
B.7 Galvanic Anodes .. 45
B.8 Anode Backfill Material ... 45
B.9 Magnesium Anode Selection ... 45
B.10 Calculation of Anode Life .. 45
B.11 Number of Feet of Well Coated Steel Pipe That Can Be Protected With One Galvanic Anode ... 46
B.12 Adjusting Factors for Anodes Installed in Parallel .. 46

Appendix C: Publication Reference ... 47