6. SPILL BUCKET AND CONTAINMENT SUMP TESTING

6.1 General. Spill buckets and containment sumps for tank systems are neither intended nor designed for the storage of petroleum products, but rather to contain small leaks and spills for short periods of time. This section describes the procedures used to test the integrity of spill buckets and containment sumps to ensure that they do not leak.

6.2 Spill Bucket Integrity Testing — Hydrostatic Test Method.

WARNING: Do not use fuels such as gasoline, E85 or diesel as a test fluid because they present a serious fire and safety hazard. Gasoline vapors are flammable and can explode if exposed to an ignition source such as a spark or open flame. If a tank or containment area is not tight, using fuel as the test fluid will cause a release into the soil or groundwater.

6.2.1 Purpose. This method is used to test the integrity of single-walled spill buckets or the primary containment of secondarily contained spill buckets.

6.2.2 Description of Test. The spill bucket is filled with water. The water level is measured at the beginning and end of the test.

6.2.3 Test Equipment. Test equipment shall include:

- water;
- measuring stick that is accurate to within 1/16 (0.063) inch and of sufficient length;
- plumber’s plug (appropriate size, if used);
- stopwatch or other time-measurement device capable of measuring a 1-second increment.

6.2.4 Preparation.

1. Care should be taken when conducting the test in the rain or during freezing weather conditions.

2. Remove and properly dispose of any liquid and debris (leaves, sediment and trash) in the spill bucket. Clean the spill bucket and examine it for damage, defects or improperly installed components. If there are loose components (e.g., loose band clamps or bolts), tighten these items before conducting the integrity test. If there are items that must be repaired or replaced (e.g., deteriorated gaskets/seals or drain valves), notify the owner/operator.

3. Examine the fill cap and adapter fitting for loose, missing or damaged parts, and make necessary repairs. Complete any repairs before putting water in the spill bucket. Make sure that the seal on the fill cap is present and in good condition. The cap must fit securely and be leak-tight on the riser. The water level during the test typically will be above the cap, so a leaking cap will result in a failed test. As an alternative to a tight-fill cap, use a plumber’s plug in the fill riser if approved by the authority having jurisdiction (AHJ) and tank owner.

4. The spill bucket drain valve, if present, must be leak-tight to pass the test. If it is not leak-tight, it may be possible to simply remove and permanently plug
the drain valve. However, if you choose to permanently plug, ensure that the local regulations allow this modification.

5. If the spill bucket is found to have cracks, loose parts or separation of the bucket from the fill pipe, it is not considered to be liquid-tight. This visually indicates a test failure.

NOTE: If the fill cap is not included in the spill bucket test and/or the cap is not tight, it could be the source of potential fuel contamination from water intrusion.

NOTE: Before permanently plugging, ensure that local regulations allow the drain valve to be permanently plugged.

6.2.5 Test Procedure.

1. Add water to the spill bucket to a level within inches of the top of the spill bucket. Allow the water to settle for 5 minutes before the initial water level measurement is taken.

2. Place the measuring stick vertically at the lowest point in the spill bucket and extending above the water level to allow for an accurate measurement to be taken. The location of the measuring stick must remain the same for each water level measurement. Document the initial water level measurement as measured from the bottom of the spill bucket. Alternative measurement methods may be used provided that measurement to 1/16 (0.063) inch can be made.

3. Take all precautions to prevent the water level from being disturbed during the duration of the test.

4. After 1 hour, document the ending water level measurement.

5. Upon completion of the test, remove and dispose of the water according to Section 6.7, and dry the inside of the spill bucket before returning it to service.

6.2.6 Pass/Fail Criteria. If the water level has dropped less than 1/8 (0.125) inch, the spill bucket passes the integrity test.

If the water level has dropped 1/8 (0.125) inch or greater, the spill bucket fails the integrity test.

6.3 Spill Bucket Integrity Testing — Vacuum Test Method.

6.3.1 Purpose. This method is used to test the integrity of single-walled spill buckets or the primary containment of secondarily contained spill buckets.

6.3.2 Description of Test. Using a specially equipped test cover, a partial vacuum is applied to the spill bucket. The vacuum level is monitored for a 1-minute period.

6.3.3 Test Equipment. Test equipment shall include:

- vacuum test apparatus (The test apparatus may be available from the spill bucket manufacturer. It includes an air pressure regulator, a vacuum source, a vacuum gauge with a minimum 0-50 inches of water column (inches WC)
range and a control valve. The control valve is used to adjust the vacuum level.);
• test cover (The cover is equipped with a test fitting.);
• plumber’s plug (appropriate size, if used);
• stopwatch or other time-measurement device capable of measuring a 1-second increment;
• gasketing material (The purpose of the gasketing material is to provide an air-tight seal between the test cover and the spill bucket.).

WARNING: Use only an air-operated vacuum source or a vacuum pump powered by an explosion-proof motor. Vacuum pumps with electric motors that are not explosion-proof may ignite flammable vapors. If a portable air compressor is used, it should be located at least 20 feet away from the venturi eductor or outside any Class I, Division 1 area.

6.3.4 Preparation.

1. Remove and properly dispose of any liquid and debris (leaves, sediment and trash) in the spill bucket. Clean the spill bucket and examine it for damage, defects or improperly installed components. If there are loose components (e.g., loose band clamps or bolts), tighten these items before performing the integrity test. If there are items that must be repaired or replaced (e.g., deteriorated gaskets/seals or drain valves), notify the owner/operator to obtain approval before proceeding with the needed repairs.

2. Examine the fill cap and adapter fitting for loose, missing or damaged parts and make necessary repairs. Make sure that the seal on the fill cap is present and in good condition. The cap must fit securely and be leak-tight on the riser. A leaking cap will result in a failed test. As an alternative to a tight-fill cap, use a plumber’s plug in the fill riser.

3. The spill bucket drain valve, if present, must be leak-tight to pass the test. If the drain valve is not leak-tight, it may be removed and permanently plugged.

NOTE: Before permanently plugging, ensure that local regulations allow the drain valve to be permanently plugged.

4. Clean any contamination from the top surface of the spill bucket where the cover makes a seal and line it with gasketing material.

5. Place the test cover on the spill bucket, confirming that it makes a tight seal with the gasketing material.

6. Connect the line from the vacuum source to the adapter on the cover.

7. If the spill bucket is found to have cracks, loose parts or separation of the bucket from the fill pipe, it is not considered to be liquid-tight. This visually indicates a test failure.

6.3.5 Test Procedure.

1. Slowly apply a vacuum of 30 inches WC to the spill bucket and close the valve. If a 30 inches WC vacuum cannot be attained, the spill bucket fails the test. See Appendix B for pressure and vacuum conversions.
2. Start the time-measurement device and record the initial vacuum level shown on the gauge.
3. After 1 minute, record the ending vacuum level.

Upon completion of the test, release the vacuum, remove the test apparatus and the gasketing material from the spill bucket and replace the original cover.

6.3.6 Pass/Fail Criteria. If the ending vacuum level is 26 inches WC or greater, the spill bucket passes the test.

If the ending vacuum level is less than 26 inches WC, the spill bucket fails the test.

6.4 Double-Walled Spill Bucket Integrity Testing — Vacuum Test Method.

6.4.1 Purpose. This method is used to test the integrity of the primary and secondary containment of the double-walled spill bucket.

6.4.2 Description of Test. A partial vacuum is applied to the interstitial space between the primary and secondary containment. The vacuum level is monitored for a 1-minute period.

6.4.3 Test Equipment. Test equipment shall include:
 • vacuum test apparatus (The test apparatus may be available from the spill-bucket manufacturer. It includes an air pressure regulator, a vacuum source, a vacuum gauge with a minimum 0-30 inch WC range, a test fitting and a control valve. The control valve is used to adjust the vacuum level.);
 • stopwatch or other time-measurement device capable of measuring a 1-second increment.

WARNING: Use only an air-operated vacuum source or a vacuum pump powered by an explosion-proof motor. Vacuum pumps with electric motors that are not explosion-proof may ignite flammable vapors. If a portable air compressor is used, it should be located at least 20 feet away from the venturi-eductor or outside any Class I, Division 1 area.

6.4.4 Preparation.
1. Remove and properly dispose of any liquid and debris (leaves, sediment and trash) in the spill bucket.
2. Clean the spill bucket and examine it for damage. Make sure that it is free of cracks, loose parts or separation of the bucket from the fill pipe. If the spill bucket is damaged, notify the owner/operator.
3. Attach the test apparatus to the test port.
4. Connect the line from the vacuum source to the test apparatus.
5. If the spill bucket is found to have cracks, loose parts or separation of the bucket from the fill pipe, it is not considered to be liquid-tight. This visually indicates a test failure.

6.4.5 Test Procedure.
1. Slowly apply a vacuum of 15 inches WC to the spill bucket interstitial space and close the control valve. If a 15-inch WC vacuum cannot be attained, the spill bucket fails the test. See Appendix B for pressure and vacuum conversions.
2. Start the time-measurement device and record the initial vacuum level shown on the gauge.
3. After 1 minute, record the ending vacuum level.

Upon completion of the test, release the vacuum, remove the test apparatus and restore the spill bucket to its normal operating condition.

6.4.6 Pass/Fail Criteria. If the ending vacuum level is 12 inches WC or greater, the spill bucket passes the test.

If the ending vacuum level is less than 12 inches WC, the spill bucket fails the test.

6.5 Hydrostatic Containment Sump Integrity Testing.

6.5.1 General.
Containment sumps are liquid-tight structures designed to temporarily contain leaks or spills. In addition, containment sumps often serve as the leak detection monitoring location for double-walled piping systems. Leakage from the primary piping typically flows by gravity inside the secondary containment piping to the sump, where it can be observed or detected by an electronic sensor. This section describes a hydrostatic integrity test method. See Section 6.6 for a low liquid level containment sump testing method and Section 6.7 for the accelerated precision hydrostatic test for spill buckets and containment sumps.

NOTE: Follow manufacturer instructions when testing the interstitial spaces of double-walled containment sumps.

CAUTION: Gaining access to the containment sump requires removing the lid, cover or dispenser panel that is in place to protect the equipment in the sump. These components can be heavy, and may require special handling and more than one person for removal. During testing, place lids, covers and dispenser panels in a safe location where they are secure and isolated from vehicle and customer traffic. When testing is complete, use caution in moving and replacing lids, covers and panels.

6.5.2 Purpose.
This section describes the preparation and procedures to perform hydrostatic testing of a containment sump to determine its integrity.

6.5.3 Description of Test.
The containment sump is filled to the proper level (see Section 6.5.6) with water. The water level is measured at the beginning and end of the test.

6.5.4 Test Equipment.
Test equipment shall include:
• water;
• measuring stick that is accurate to within 1/16 (0.063) inch and of sufficient length;
• stopwatch or other time-measurement device capable of measuring a 1-second increment.

6.5.5 Preparation.
1. Care should be taken when conducting the test in the rain or during freezing weather conditions to prevent false positive results.
2. Remove and properly dispose of any liquid and debris (e.g., leaves, sediment, trash) in the containment sump.
3. Inspect the containment sump for damage. Examine all penetration fittings, conduits, junction boxes, caps and risers (if present), and sidewall seams for defects, damage or improperly installed components. If loose components are present (e.g., loose penetration fitting clamps or missing interstitial space caps), correct these items before performing the integrity test. If any items must be repaired or replaced (e.g., deteriorated penetration fitting boots), notify the owner/operator and obtain approval prior to proceeding with repairs.
4. Test boots or secondary containment termination fittings must be present on the piping that penetrates the sump. During testing, these fittings prevent water from entering the interstitial space of double-walled piping. Without these fittings, the integrity of the sump cannot be tested using this method.
5. If interstitial monitoring sensors are in the containment sump, temporarily remove them before conducting the test. After testing, place sensors in the appropriate position according to manufacturer instructions.
6. If the containment sump is found to have cracks, loose parts or separations of any joints or penetration fittings in the area that will be tested, it is not considered to be liquid-tight. This is a visual indicator of a test failure.

CAUTION: Water can damage electrical connections. Ensure that no components can be damaged by the addition of water to the sump. If such components are present, take appropriate precautions when performing the test or use an alternative test method.

6.5.6 Test Procedure.
1. Begin the test by adding water to the sump to a minimum of 4 inches above the highest sump penetration or sump sidewall seam, whichever is higher. To compensate for sump deflection, the water must be allowed to settle a minimum of 15 minutes before taking the initial test measurement. If the highest sump penetration or sump sidewall seam is less than 4 inches from the top of the sump, add water to within 1 inch of the top of the sump.

2. Place and properly secure the measuring stick vertically at the lowest point in the sump and extending above the water level in the sump to allow for an accurate measurement. The location of the measuring stick must remain the same for each water level measurement. Document the initial water level measurement as measured from the bottom of the sump. Alternative measurement methods may be used provided that a measurement to 1/16 (0.063) inch can be made.
3. Take all precautions to prevent the water level from being disturbed during the duration of the test.

4. After 1 hour, document the ending water level measurement.

5. Upon completion of the test:
 - remove all water and properly dispose of it according to Section 6.8;
 - reinstall any interstitial monitoring sensors in their proper positions;
 - return the test boots or secondary containment fittings to their pre-test operating configurations;
 - inspect and reinstall all containment sump lids, gaskets and covers.

6.5.7 Pass/Fail Criteria.
If the water level changes less than 1/8 (0.125) inch, the containment sump passes the integrity test. If the water level changes 1/8 (0.125) inch or greater, the containment sump fails the integrity test.

6.6 Low Liquid Level Containment Sump Testing.

6.6.1 General. Containment sumps are liquid-tight structures designed to temporarily contain leaks or spills. In addition, containment sumps often serve as the leak detection monitoring location for double-walled piping systems. Leakage from the primary product piping should flow by gravity inside the secondary containment to the sump, where it can be observed or detected by a sensor. The committee recognizes that some AHJs accept some form of low liquid level test for containment sump integrity testing. This section describes a low liquid level hydrostatic test method that actuates an electronic sensor or mechanical float device for positive shutdown of product flow or positive shutdown of a dispensing device.

- Low liquid level hydrostatic sump testing does not assess the integrity of the entire containment sump but, instead, tests only the integrity of the bottom portion of the containment sump and the ability of the liquid sensor or mechanical float device to shut down any submersible turbine pumps (STPs) or dispensing devices associated with that sump.
- Under no circumstances should the low liquid level hydrostatic sump testing protocol be employed for initial testing of newly installed containment sumps or for testing of containment sumps that have been repaired. Please refer to Section 6.5 for information on containment sump integrity testing.

CAUTION: Gaining access to the containment sump requires removing the lid, cover or dispenser panel that is in place to protect the equipment in the sump. These components can be heavy, and may require special handling and more than one person for removal. During testing, place lids, covers and dispenser panels in a safe location where they are secure and isolated from vehicle and customer traffic. When testing is complete, use caution in moving and replacing lids, covers and dispenser panels.
6.6.2 Purpose. This section describes the preparation and procedures to perform a low liquid level hydrostatic containment sump test.

6.6.2.1 Requirements for Test.
1. To qualify for this test, a containment sump must have liquid sensors configured to shut down any STPs upon activation of the sensor; stand-alone sensors that shut down a dispensing device; or mechanical float devices that shut down flow at the shear valve. See Section 6.6.5 (#6).
2. Containment sumps must be free of debris and incidental moisture prior to testing.
3. Individuals performing the test must have a current certification by the sensor manufacturer for the proper operation and testing of the sensor and monitoring system, if such certification is available, and have a current testing certification from the AHJ if required.
4. Testing of sensor activation must be in accordance with sensor manufacturer instructions.

6.6.3 Description of Test. The electronic liquid detecting sensor is removed from the sump, an alarm condition is triggered and the appropriate response is observed. The electronic sump sensor alarms at the level stipulated by the sensor manufacturer and shuts down all products flowing from the containment sump, or if the sump is equipped with a stand-alone electronic sensor, it shuts down the associated dispenser or STPs.

If an under-dispenser containment (UDC) mechanical float device is used, the containment sump is filled to the proper level with water to activate the mechanical float.

Once the electronic sensor or mechanical float device is verified to be operational and the appropriate equipment is shut down, water is added to the sump to a level of 4 inches above the sensor or float activation point. The water level is measured at the beginning and end of the test.

6.6.4 Test Equipment. Test equipment shall include:
- water;
- measuring stick that is accurate to within 1/16 (0.063) inch and of sufficient length;
- stopwatch or other time-measurement device capable of measuring a 1-second increment.

6.6.5 Preparation.
1. Care should be taken when conducting the test in the rain or during freezing weather conditions.
2. Remove and properly dispose of any liquid and debris (e.g., leaves, sediment and trash) in the containment sump.
3. Inspect the containment sump for damage. Examine all penetration fittings, conduits, junction boxes, caps and risers (if present), and sidewall seams for defects, damage or improperly installed components. If loose components are present (e.g., loose penetration fitting clamps or missing interstitial space caps), correct these items before performing the test. If any must be repaired or replaced (e.g., deteriorated penetration fitting boots), notify the owner/operator and obtain approval prior to proceeding with repairs. **If any of the following conditions are found prior to testing, the sump shall be disqualified for the low liquid level testing method:**
 - the sump is found with liquid levels high enough to trigger a properly positioned sensor, whether or not the sensor is in alarm;
 - any evidence is found that liquid has been at a level equal to or higher than the lowest penetration in the sump;
 - a containment sump sensor is discovered to be in a position higher than that recommended by the manufacturer or otherwise manipulated to prevent or inhibit activation; or
 - the sump failed a visual inspection under Section 6.6.5(4).
4. If the containment sump is found to have cracks, loose parts or separation of any joints or penetration fittings, it is not considered liquid-tight. This is a visual indicator of a test failure.
5. Test boots or secondary containment termination fittings must be present on the piping that penetrates the sump if the penetration will be within the liquid level of the test.
6. An electronic sensor or UDC mechanical float device must be installed in all UDC and STP containment sumps.
 - If the sensor is electronic, determine if it is stand-alone or connected to an electronic monitoring system (EMS), such as an automatic tank gauge (ATG).
 - If the sensor is stand-alone, verify that it will shut down devices (dispenser or STP) associated with that sensor.
 - If the sensor is connected to an EMS, verify that it will shut down all STPs associated with that sensor.
 - If the sensor is a UDC mechanical float device, verify that it is connected to all shear valves in UDC.
7. If the sensor is removed for any reason, reposition after testing to the appropriate position, according to manufacturer instructions.

6.6.6 Test Procedure.

6.6.6.1 Electronic and Stand-Alone Sump Sensor

1. Fill the test container with the appropriate liquid.
2. Remove the electronic sump sensor from the sump.

3. Place the electronic sump sensor into the liquid in the operating position. The alarm should be triggered.

4. Verify the alarm condition and make sure the sensor label is correctly identified on the console. If the label is incorrect, contact the appropriate person. If no alarm is triggered, remove the sensor from the container, check the connections, allow the liquid to drain from the sensor and immerse it into the liquid again. If the sensor is replaced, repeat the test procedure.

5. Remove the sensor from the test container and allow the liquid to drain to clear the alarm. If product is used as the test liquid, follow manufacturer instructions for cleaning the sensor before it is replaced.

7. Add water to the containment sump a minimum of 4 inches above the sensor activation point. To compensate for sump deflection, the water must be allowed to settle a minimum of 15 minutes before taking the initial test measurement.

8. Place and properly secure the measuring stick vertically at the lowest point in the sump and extending above the water level in the sump to allow for an accurate measurement. The location of the measuring stick must remain the same for each water level measurement. Document the initial water level measurement as measured from the bottom of the sump. Alternative measurement methods may be used provided that a measurement to 1/16 (0.063) inch can be made.

9. Take all precautions to prevent the water level from being disturbed throughout the duration of the test.

10. After 1 hour, document the ending water level measurement.

11. Upon completion of the test:
 - remove all water and properly dispose of it according to Section 6.8;
 - reinstall the sensor in the proper location and position;
 - inspect and reinstall all containment sump lids, gaskets and covers.

12. Clear the alarm condition on the console. If equipped with a printer, print the alarm report for facility records and indicate that a sensor functionality test was conducted.

6.6.6.2 UDC Mechanical Float Device.

1. If a mechanical float device is installed, begin by adding water to the sump until the float device is activated and trips the appropriate shear valves in the UDC,
shutting off product flow to the dispenser. If the float device does not trigger and trip the shear valve and stop flow to the dispenser prior to the water level reaching the lowest sidewall entry boot, the float is not functional and the sump fails the low liquid level test protocol. If the mechanical float device works as intended continue with the hydrostatic portion of the test.

2. Add water to the containment sump a minimum of 4 inches above the float activation point. To compensate for sump deflection, the water must be allowed to settle a minimum of 15 minutes before taking the initial test measurement.

3. Place and properly secure the measuring stick vertically at the lowest point in the sump and extending above the water level in the sump to allow for an accurate measurement. The location of the measuring stick must remain the same for each water level measurement. Document the initial water level measurement as measured from the bottom of the sump. Alternative measurement methods may be used provided that a measurement to 1/16 (0.063) inch can be made.

4. Take all precautions to prevent the water level from being disturbed throughout the duration of the test.

5. After 1 hour, document the ending water level measurement.

6. Upon completion of the test:
 - remove all water and properly dispose of it according to Section 6.8;
 - reinstall the mechanical float device in the proper location and position;
 - inspect and reinstall all containment sump lids, gaskets and covers.

7. Clear the alarm condition on the console. If equipped with a printer, print the alarm report for facility records and indicate that a sensor functionality test was conducted.

6.6.7 Pass/Fail Criteria.

- If the electronic liquid sensor connected to an EMS does not activate at the appropriate level (typically 1-inch liquid level) and shut down all STPs associated with that sensor, the low liquid level test fails.

- If the stand-alone electronic liquid sensor connected to a device (dispenser or STP) does not activate at the appropriate level (typically 1-inch liquid level) and shut down the device (dispenser or STP) associated with that sensor, the low liquid level test fails.
• If a mechanical float device does not activate at the appropriate level (typically 1-inch liquid level), trip the associated shear valve(s) and shut down product flow to the dispenser, the low liquid level test fails.

• If the water level changes less than 1/8 (0.125) inch, the containment sump passes the hydrostatic portion of the test. If the water level changes 1/8 (0.125) inch or greater, the containment sump fails the hydrostatic portion of the test.

• Sump must pass both the sensor portion and hydrostatic portion to pass the low liquid level test protocol.

6.7 Accelerated Precision Hydrostatic Test for Spill Buckets and Containment Sumps.
Electronic precision test equipment can be utilized to test spill buckets and containment sumps. It incorporates more sensitive equipment that permits a test to be conducted in a shorter period of time. The procedures use the same test fluid and test the same volume as other methods outlined in this chapter. The manufacturer of the measurement equipment should specify the precision and duration of the test and the pass/fail criteria. However, the pass/fail criteria should not be less stringent than those prescribed for the 1-hour test in Section 6.5.7.

The data sheet for Sections 6.2 or 6.5 may be used for this test. Refer to Appendix C.

6.8 Proper Handling of Test Liquids. Test liquids must be handled properly. Check with the AHJ regarding requirements.
APPENDIX C-4A

CONTAINMENT SUMP TESTING

LOW LIQUID LEVEL TEST METHOD

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>Owner:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>Address:</td>
</tr>
<tr>
<td>City, State, Zip Code:</td>
<td>City, State, Zip Code:</td>
</tr>
<tr>
<td>Facility I.D. #:</td>
<td>Phone #:</td>
</tr>
<tr>
<td>Testing Company:</td>
<td>Phone #:</td>
</tr>
</tbody>
</table>

This procedure is to test containment sumps using the low liquid level method. See PEI/RP1200 Section 6.6 for the test method.

<table>
<thead>
<tr>
<th>Containment Sump ID</th>
<th>Containment Sump Material</th>
<th>Visual Inspection (No cracks, loose parts or separation of the containment sump.)</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Upon arrival, is there evidence that liquid has been at a level equal to or higher than the lowest penetration in the sump?</th>
<th>Upon arrival, was there liquid in the sump at a high enough level to trigger a properly positioned sensor?</th>
<th>Upon arrival, sump sensor was properly positioned per manufacturer?</th>
<th>Liquid and debris were removed from sump? *</th>
<th>When tested, electronic sensor connected to EMS, stand-alone sensor or mechanical float device shuts down appropriate STP, dispenser or product as required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting Water Level</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Test Start Time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ending Water Level</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Test End Time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Test Period (Minimum test time: 1 hour)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Water Level Change</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pass/fail criteria: Must pass visual inspection, must pass inspection questions per section 6.6.5 and water level drop of less than 1/8 inch.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Test Results</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

*All liquids and debris must be disposed of properly.

Tester’s Name (print)_________________________ Tester’s Signature (print)_________________________